ТРАНСФОРМАТОРЫ59

9НЕРГИЯ

ЕДИНОЙ СЕТИ № 3-4 (64-65) — 2022

ОПЫТНАЯ МОДЕЛЬ СХЕМЫ ДИАГНОСТИ-РОВАНИЯ СИЛОВЫХ ТРАНСФОРМАТОРОВ С ИСПОЛЬЗОВАНИЕМ СОГЛАСУЮЩИХ ТРАНСФОРМАТОРОВ

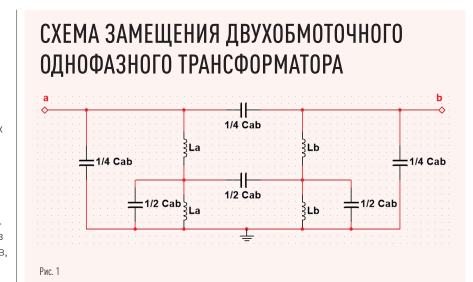
ABTOP

А.Л. ФРОЛОВ, ФГБОУ ВО «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

иагностика силового оборудования электрических сетей в современных условиях требует создания новых способов и схем проведения диагностики неисправностей силовых трансформаторов. Известные методы неразрушающего контроля, чувствительные к появлению остаточных деформаций, а также к нарушению состояния основной изоляции обмоток силовых трансформаторов, требуют соблюдения взаиморасположения измерительного оборудования и коммутации. С целью снижения взаимовлияния объекта диагностирования и измерительного оборудования проведено моделирование исходной

и с измененными параметрами величин межобмоточных емкостей и индуктивностей обмоток схемы замещения силового трансформатора и экспериментальное исследование схемы проведения диагностирования силовых трансформаторов с использованием согласующего устройства. На основании выполненных исследований предложена опытная модель схемы проведения диагностирования силовых трансформаторов, позволяющая за счет применения согласующего устройства проводить диагностирование силовых трансформаторов с наименьшим взаимовлиянием сопротивлений измерительного и измеряемого оборудования.

Ключевые слова: методы неразрушающего контроля; силовой трансформатор; опытная модель; схема диагностирования; анализ спектрограмм; согласующее устройство.



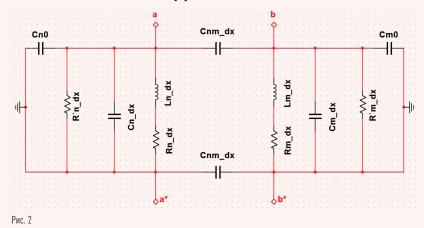
Контроль состояния трансформаторов позволяет обеспечивать надежную работу электросетевых объектов

ВВЕДЕНИЕ

В современных электросетях применяется разнообразное оборудование, где каждый элемент способствует безопасной и бесперебойной работе. Самым важным и дорогостоящим оборудованием в электрических сетях являются силовые трансформаторы. Существует множество методик диагностики методами неразрушающего контроля [1], созданных и применяемых для определения общего состояния силовых трансформаторов. Контроль состояния трансформаторов заключается в анализе их параметров, измеренных приборами контроля, а также в визуальном осмотре. Контроль производится с целью предупреждения возможных отказов силового оборудования. Важные этапы контроля состояния трансформаторов: тепловизионный контроль, хроматографический анализ растворенных газов, контроль резонансных состояний, выявление и локализация частичных разрядов. Такая диагностика позволяет выявить неисправности силового трансформатора, однако не всегда подобные методы являются эффективными [2]. В связи с этим в данной работе показана опытная модель схемы диагностирования силовых трансформаторов с согласующим устройством, которая дает возможность провести анализ полученных амплитудно-частотных характеристик (АЧХ) и локализовать неисправные узлы или части объекта диагностирования.

Диагностика силовых трансформаторов с помощью электрических методов неразрушающего контроля, таких как метод низковольтных импульсов и метод анализа частотного отклика (SFRA), рассмотрена в работах А.Ю. Хренникова [3], Н.М. Александрова [4], В.И. Завидей [5] и др. Досточиством данных методов диагностирования является в первую очередь получение результатов диагностирования с помощью первичного дефектографирования, когда результаты предыдущих измерений отсутствуют,

и высока чувствительность к изменению механического состояния обмоток, сердечника, зажимных устройств. К недостаткам можно отнести жесткие требования к соблюдению взаимного расположения измерительного оборудования и коммутации устройств диагностирования, что может значительно влиять на результаты диагностирования и принятие дальнейших решений. и сложности с интерпретацией результатов диагностирования. Предлагаемая в работе опытная модель схемы диагностирования позволяет значительно снизить требования к проведению диагностирования, в частности к взаимному расположению измерительного оборудования и коммутации устройств диагностиро-


Для демонстрации достоинств опытной модели схемы диагностирования необходимо решить следующие задачи: исследовать влияние электрических параметров схемы замещения опытного образца на форму и параметры графика АЧХ, собрать опытную модель схемы проведения диагностирования с использованием согласующих трансформаторов, провести измерения для получения осциллограмм измерительных сигналов, преобразовать полученные осциллограммы в АЧХ для их дальней-

шего анализа в целях локализации неисправных узлов или частей объекта диагностирования.

Для понимания изменений электрических параметров и частотных свойств активной части опытной модели силового трансформатора в зависимости от степени развития дефектов любого рода при прохождении электрических сигналов через тракт на рис. 1 показана схема замещения однофазного двухобмоточного силового трансформатора.

Как видно из рис. 1, схема замещения двухобмоточного однофазного трансформатора представляет собой колебательный контур, состоящий из распределенных величин взаимоиндуктивностей обмоток фаз а, b — Cab и индуктивностей фаз а, b — La, Lb с двумя уравновешенными поперечными плечами с одинаковым сопротивлением. Элементы плеч контура представлены распределенными параметрами относительно 1/2 Саь и ¼ Саь. Из этого можно сделать вывод, что изменение АЧХ тракта прохождения сигнала будет являться результатом изменения номинала хотя бы одного из элементов данного колебательного контура. Это высказывание можно считать верным и для схемы замещения элемента обмоток

СХЕМА ЗАМЕЩЕНИЯ ЭЛЕМЕНТА ОБМОТОК ТРАНСФОРМАТОРА ДЛИНОЙ DX

ЗНАЧЕНИЯ ТОЧЕК РЕЗОНАНСОВ АЧХ

График АЧХ	Частота, кГц	Уровень, дБ
a)	29,5	29,2
6)	56,2	42,4
в)	87,1	36,3
T		

трансформатора некоторой длины dx, представленной на рис. 2.

На схеме замещения элемента обмотки трансформатора изображены параметры обмотки на единицу длины: Ln, Lm — собственные индуктивности первичной п и вторичной т обмоток; Cn, Cm — междувитковые емкости (продольные) первичной и вторичной обмоток; Cnm — взаимная емкость первичной и вторичной обмоток; СпО, Cm0 — емкости по отношению к земле первичной и вторичной обмоток; Rn, Rm — активные сопротивления первичной и вторичной обмоток; R`n, R`m — активные сопротивления, представляющие собой потери в сердечнике [6].

Для проверки влияния изменения параметров схемы на параметры АЧХ выходного сигнала промоделируем

показанную на рис. 1 схему замещения трансформатора в ПО Multisim

При проведении моделирования воспользуемся инструментом «плоттер Боде», позволяющим получить АЧХ [10] созданной принципиальной схемы. Исследование АЧХ на предмет резонансов показало наличие трех ярко выраженных резонансов, значения которых представлены в табл. 1.

Данные резонансы при проведении дальнейшего исследования будут являться показательными для сравнения с результатами измерений АЧХ схем с измененными параметрами схемы замещения трансформатора.

Из приведенных в табл. 2 данных видно, что увеличение значений проходных межобмоточных емкостей

на величину не более 5% от исходных приводит к смещению второго резонанса вниз по частоте более чем на 1 кГц, а по уровню величина резонанса изменяется более чем в 2 раза. что может являться показателем изменений в системе межобмоточной изоляции трансформатора [8, 9].

Из приведенных в табл. 3 данных видно, что изменение значения индуктивности одной из обмоток не влияет на частоты резонансов [11], однако приводит к изменению всех трех величин резонансов по уровню, что может являться показателем изменений механического состояния обмоток трансформатора [8, 9].

МЕТОДИКА ИССЛЕДОВАНИЯ

Для подтверждения результатов моделирования проведено исследование на лабораторных образцах однофазного силового трансформатора ОСМ1-0,4-220/42 и тороидального трансформатора ТТП-100. Эксперименты выполнены на образцах со следующими дефектами: замыкание между слоями шихтованной стали сердечника, межвитковое замыкание, нарушение целостности основной изоляции, радиальное смещение обмотки.

На рис. 3 приведена структурная схема опытной модели — измерительной установки с использованием согласующего трансформатора. Схема содержит в себе генератор прямоугольных импульсов от 1 кГц до 5 МГц с выходным импедансом 50 Ом и согласующее устройство [12] в виде широкополосного трансформатора тока, выполненного на ферритовом кольцевом сердечнике марки М1000 НМ. Вторичная обмотка трансформатора тока намотана бифилярно и имеет две пары выводов [6]. К генератору импульсов подключаются начало и конец одной обмотки, а начало и конец другой обмотки — к одному

из каналов осциллографа (входной импеданс 1 МОм) для снятия осциллограмм. При проведении измерений использовался метод низковольтных импульсов. Первичная обмотка трансформатора тока представляет собой жесткую перемычку из отрезка медной шины, проходящей через окно кольцевого сердечника и закорачивающей начало и конец обмотки одной из исследуемых фаз трансформатора. При такой схеме проведения измерений вследствие гальванической развязки и слабой связи между измерительным оборудованием и объектом исследования наблюдается сильное снижение влияния взаиморасположения объектов измерительного оборудования, а также электрической коммутации между ними на результаты исследования.

Кроме того, такой вариант согласования генератора импульсов с исследуемым объектом обеспечивает снижение влияния выходных цепей измерительного оборудования на входные цепи исследуемого устройства [7].

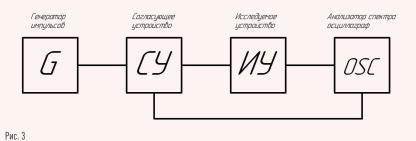
Представленный метод диагностики активной части трансформатора был протестирован в лабораторных условиях на ряде силовых трансформаторов без повреждений (а) и с принудительно введенной неисправностью (б). На обеих осциллограммах выделен участок, визуально отличающийся нелинейностью кривой для образца до (а) и после (б) введения неисправности.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Для подтверждения результатов моделирования трансформатора по схеме замещения (см. рис. 1) проведены аналогичные измерения на реальном образце трансформатора ТТП-100 с использованием измерительного прибора OSA 103 (входной импеданс 50 МОм). Для согласования сопротив-

ЗНАЧЕНИЯ ТОЧЕК РЕЗОНАНСОВ АЧХ (ИЗМЕНЕННЫЕ ЕМКОСТИ)

График АЧХ	Частота, кГц	Уровень, дБ
a)	29,5	31,6
6)	55,0	17,4
в)	87,1	27,7


Таблица 2

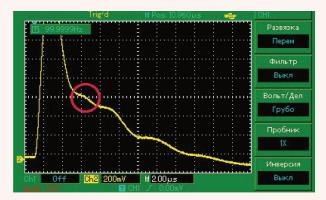
ЗНАЧЕНИЯ ТОЧЕК РЕЗОНАНСОВ АЧХ (ИЗМЕНЕННЫЕ ИНДУКТИВНОСТИ)

График АЧХ	Частота, кГц	Уровень, дБ
a)	29,5	29,6
6)	56,2	29,7
в)	87,1	31,4

Таблица 3

СТРУКТУРНАЯ СХЕМА ОПЫТНОЙ МОДЕЛИ СХЕМЫ ДИАГНОСТИРОВАНИЯ

лений в широком диапазоне использовались согласующий трансформатор и коммутация в соответствии со схемой проведения измерений.


Получен график АЧХ (рис. 5).

На данном этапе исследование характеристик обмоток проводилось на частоте до 250 кГц с использованием измерительного оборудования с диапазоном измерений до 1 МГц. Данный диапазон достаточен для эксперимен-

тального подтверждения результатов моделирования диагностических схем с использованием согласующего устройства, представленного в статье, а также для принципиального доказательства наличия или отсутствия дефекта. Следующим этапом данного исследования будет выявление конкретных видов дефектов силовых трансформаторов с применением метода моделирования диагностических схем с использованием согласующего устройства.

ТРАНСФОРМАТОРЫ 63 ЭНЕРГИЯ ЕДИНОЙ СЕТИ № 3-4 (64-65) — 2022

ОСЦИЛЛОГРАММЫ ЛАБОРАТОРНОГО ИССЛЕДОВАНИЯ ОБРАЗЦА ИССЛЕДУЕМОГО ТРАНСФОРМАТОРА. ИЗОБРАЖЕНА ВРЕМЕННАЯ ЗАВИСИМОСТЬ ИЗМЕРИТЕЛЬНЫХ СИГНАЛОВ ОТКЛИКА ДО И ПОСЛЕ ПОЯВЛЕНИЯ НЕИСПРАВНОСТИ

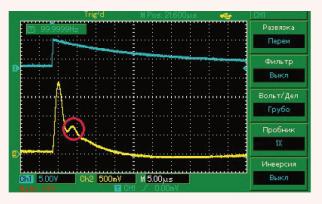


РИС. 4

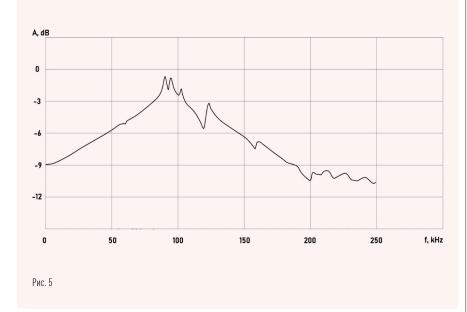
Исследуемый участок АЧХ представлен на рис. 6. Наблюдается равнозначное смещение всех трех резонансов по частоте. Это объясняется неучтенной в схеме замещения магнитной связью между обмотками трансформатора, а также магнитными свойствами сердечника трансформатора [13–15]. В нормальном состоянии наибольшие уровни резонансов соответствуют частотам 83 кГц при — 1,1 дБ, 92 кГц при — 1,2 дБ, 108 кГц при — 1,9 дБ.

Как видно из рис. 4, АЧХ исследуемого трансформатора близка по форме к АЧХ симулированной схемы замещения трансформатора. Следовательно, согласование сопротивлений реальной модели с использованием согласующего устройства близко к полному согласованию вследствие слабого влияния исследуемого объекта на измерительное оборудование.

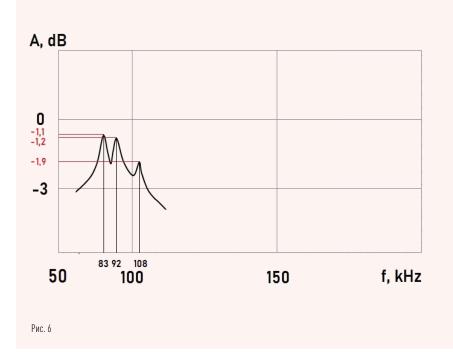
ЗАКЛЮЧЕНИЕ

Исследовано влияние электрических параметров схемы замещения опытного образца на форму и параметры графика АЧХ, разработана опытная модель схемы диагностирования си-

ловых трансформаторов для анализа полученных АЧХ и локализации неисправных узлов или частей объекта диагностирования.


Применение согласующего устройства в схеме опытной модели диагностирования трансформаторов позволяет значительно снизить требования к проведению диагностирования, в частности к взаимному расположению измерительного оборудования и коммутации устройств диагностирования. Предлагаемая схема диагностирования может быть использована в комплексе с применяемыми в настоящее время электрическими методами неразрушающего контроля состояния силовых трансформаторов [16–19].

ЛИТЕРАТУРА


- 1. Хальясмаа А.И., Дмитриев С.А., Кокин С.Е., Шлушков Д.А. Диагностика электрооборудования электрических станций и подстанций: учебное пособие. Екатеринбург: Издательство Уральского университета, 2015. С. 20–40.
- Дудаева Л.Г. Методы неразрушающего контроля//Молодой ученый. 2018. № 34 (220). С. 6–10. URL: https://moluch.ru/archive/220/52432/(дата обращения: 22.01.2022).

- Хренников А.Ю. Методы диагностики механического состояния обмоток//Новости электротехники.
 2009. № 3 (57). URL: http://www.news.elteh гu/arh/2009/57/08.php (дата обращения: 15.04.2022).
- Александров Н.М. Интерпретация результатов анализа состояния обмоток силовых трансформаторов методом частотного отклика//Энергетик. 2020. № 5 (2020). URL: http://www.energetik.energy-journals. ru/index.php/EN/article/view/1570 (дата обращения: 11.04.2022).
- Завидей В.И., Ларин В.С., Волков А.Ю., Дробышевский С.А. К диагностике технического состояния обмоток силовых трансформаторов после воздействия токов коротких замыканий//Экспозиция нефть газ. 2018. № 5 (65). С. 80–84.
- Бернас С., Цёк З. Математические модели элементов электроэнергетических систем. М.: Энергоиздат, 1982.
- 7. Тюрюмина А.В., Секацкий В.С., Батрак А.П. Современное состояние вопроса диагностики силовых трансформаторов//Современные материалы, техника и технологии. 2015. № 3 (3). С. 245–250. URL: https://www.elibrary.ru/item.asp?id=25149599/(дата обращения: 12.12.2021).
- Лукьянов М.Р. Анализ неисправностей силового трансформатора//Образование и наука в России и за рубежом. 2019. № 16 (64). С. 279–282. URL: https://www.elibrary.ru/item.asp?id=41715914/(дата обращения: 12.12.2021).
- Исаев Ю.Н., Старцева Е.В. Расчет параметров распределенной схемы замещения обмоток трансформатора с учетом влияния скин-эффекта//

АЧХ ИССЛЕДУЕМОГО ОБРАЗЦА ТРАНСФОРМАТОРА, ПОЛУЧЕННАЯ С ПОМОЩЬЮ АНАЛИЗАТОРА OSA 103

ИССЛЕДУЕМЫЙ УЧАСТОК АЧХ

- Известия Томского политехнического университета. Инжиниринг георесурсов. 2015. № 9. С. 47–55. URL: https://cyberleninka.ru/article/n/raschet-parametrov-raspredelennoy-shemy-zamescheniya-obmotok-transformatora-s-uchetom-vliyaniya-skin-effekta/viewer/(дата обращения: 12.12.2021).
- Таран Н.В., Кисловский Е.Ю., Цыбрий И.К., Липянин Д.Е. Метод измерения амплитудночастотной характеристики с использованием широкополосного сигнала//Инженерный вестник Дона. 2020. № 3. URL: http://www.ivdon. ru/uploads/article/pdf/IVD_68_1_taran_kislovskiy. pdf fa913e1ae3.pdf/(дата обращения: 12.12.2021).
- 11. Пентегенов И.В., Рымар С.В., Безручко В.М. Расчет и сравнение индуктивностей цепей протекания токов нулевой последовательности в автотрансформаторных фильтрах//Техн, електродинаміка. 2009. № 6. С. 38–45. URL: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/13126/07-Pentegov.pdf?sequence=1/(дата обращения: 13.12.2021).
- 12. Самойлов А.Г., Самойлов С.А. Концепция согласования радиопередающих устройств с нагрузками//Т-Comm. 2013. № 9. С. 127–131. URL: https://cyberleninka.ru/article/n/kontseptsiyasoglasovaniya-radioperedayuschih-ustroystv-s-nagruzkami/viewer/(дата обращения: 12.12.2021).
- Qingchuan Fan, Fei Yu Min Xuan. Transformer fault diagnosis method based on improved whale optimization algorithm to optimize support vector machine. Energy reports. China, 2021. P. 856–866.
- Sofia Moreira de AndradeLopes, Rogério
 AndradeFlauzino, Ruy Alberto CorrêaAltafim. Incipient
 fault diagnosis in power transformers by data-driven
 models with over-sampled dataset [Electric Power
 Systems Research, vol. 201]. Brazil, University of São
 Paulo. 2021.
- Peng Li, Pengcheng Guo. Diagnosis of interturn faults of voltage transformer using excitation current and phase difference [Engineering Failure Analysis, vol. 134]. China, Xi'an University of Technology, 2022.
- Дудаева Л.Г. Методы неразрушающего контроля//Молодой ученый. 2018. № 34 (220). С. 6–10. URL: https://moluch.ru/archive/220/52432/(дата обращения: 22.01.2022).
- 17. Козлов А.Н. Диагностика электроустановок: учебное пособие. Благовешенск: Изд-во АмГУ. 2014.
- Чичёв С.И., Глинкин Е.И. Диагностика силовых трансформаторов 110 кВ и выше в региональных сетевых компаниях//Вести высших учебных заведений Черноземья. Липецк. 2010. № 3 (21). С. 6–12.
- Дорожко С.В. Диагностика механического состояния обмоток трансформаторов анализатором АКЗ-824//Сельский механизатор. 2019. № 4. С. 46–47.