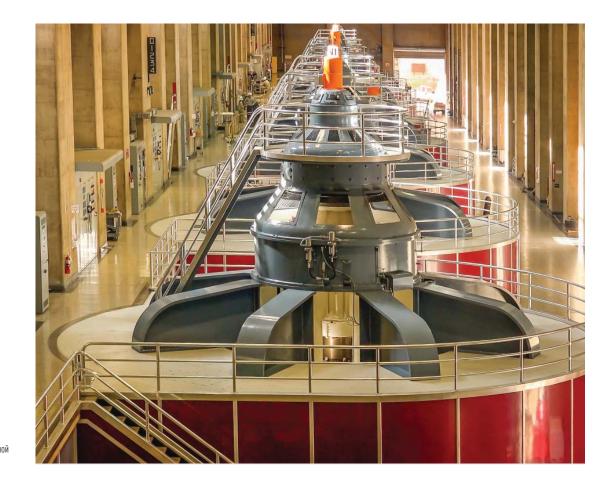
ТЕНДЕНЦИИ РАЗВИТИЯ ВРАЩАЮЩИХСЯ ЭЛЕКТРИЧЕСКИХ МАШИН (ПО МАТЕРИАЛАМ 47-Й СЕССИИ СИГРЭ)

АВТОРЫ


В.В. БЕЛЯКОВ, 000 «ИНТЕР РАО — ИНЖИНИРИНГ»

Ю.Д. ВИНИЦКИЙ, Д.Т.Н., 000 «ИНТЕР РАО — ИНЖИНИРИНГ»

М.Б. РОЙТГАРЦ, К.Т.Н., ПАО «СИЛОВЫЕ МАШИНЫ— ЭЛЕКТРОСИЛА» Париже 26–31 августа с.г. прошла 47-я Сессия СИГРЭ. 26 докладов, представленных на заседаниях Исследовательского

комитета А1 «Вращающиеся электрические машины», достаточно полно характеризуют современное состояние данной отрасли электроэнергетики.

Ключевые слова: вращающаяся машина; генератор; Системный оператор; синхронный компенсатор; частичные разряды.

ВВЕДЕНИЕ

СИГРЭ является некоммерческой неправительственной организацией, основанной в Париже в 1921 г. Членами СИГРЭ в настоящее время являются более 1100 организаций из 98 стран мира. Свыше 7000 экспертов активно сотрудничают по различным направлениям электроэнергетики. Всего в структуре СИГРЭ действуют 16 Исследовательских комитетов (ИК).

Представителем России в ИК А1 является М.Б. Ройтгарц, руководителем Подкомитета (ПК) А1 РНК СИГРЭ — В.В. Беляков, координатором работы ПК А1 — Ю.Д. Виницкий.

ИК А1 ответственен за направление «Вращающиеся электрические машины» и их применение для генерации электрической энергии (генераторы и мощные двигатели для различных механизмов на электрических станциях). Основными направлениями работы комитета А1 авлаются:

- Турбогенераторы AG/WGs A1.01;
- Гидрогенераторы AG/WGs A1.02;
- Новые технологии AG/WGs A1.05;
- Электрические двигатели AG/WGs A1.06.

На Сессии был продемонстрирован постоянно растущий уровень разработки технических решений в области совершенствования конструкции генераторов большой мощности, а также генераторов меньшей мощности для работы с возобновляемыми источниками энергии. Появление новых материалов, математических программ расчета процессов позволяет снижать себестоимость разрабатываемых электрических машин, повышать их надежность и эффективность.

Как и на предыдущих Сессиях и коллоквиумах, в промежутках между

Сессиями было обращено внимание на существенное изменение нагрузочных режимов генерирующих агрегатов. Значительный рост доли возобновляемых источников энергии в общей генерации привел к необходимости более тесного взаимодействия Системного оператора и производителей генераторов различной мощности. Выявлена необходимость модернизации (а в некоторых случаях и разработка новых решений) конструкции генератора для удовлетворения требований Системного оператора, особенно при подключении маломощных энергосистем к мощным энергосистемам. Сформулированы требования к необходимым диапазонам изменения частоты и напряжения, а также к скорости изменения на-

Следует отметить интерес к возврату к синхронным компенсаторам, в том числе к разработке и практической реализации решений по повышению устойчивости и стабилизации напряжения в энергосистеме путем использования выведенных из работы генераторов (отключение от турбины) в режиме синхронного компенсатора. Это, по мнению российских разработчиков, открывает дополнительные перспективы для использования асинхронизированных генераторов и созданных на тех же принципах асинхронизированных синхронных компенсаторов.

Цифровизация энергетики не оставила в стороне и проблемы вращающихся машин. Важным трендом является создание высокоинтеллектуальных устройств и систем непрерывного мониторинга и диагностики вращающихся машин, базы данных работающего оборудования, анализ и обобщение выявленных трендов с целью обеспечения продления ресурса и существенного прогресса в продвижении ремонтов «по состоянию» как наиболее экономичных способов организации ремонтов.

ATAAHT

диспетчерские пульты

- Разнообразие конфигураций;
- ровная столешница по всей длине пульта;
- надежный стальной каркас;
- встроенные кабельные каналы для сигнальных и электрических проводов;
- лючки доступа к верхнему кабельному каналу;
- тыловой и фронтальный доступ к оборудованию;
- естественный и принудительный воздухообмен для установленного оборудования:
- модульная система энергоснабжения.

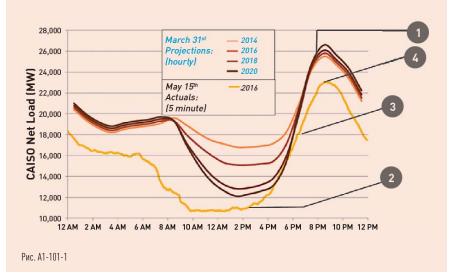
- Мягкий кант для защиты рук диспетчера во всех комплектациях;
- соответствие требованиям эргономики;
- износостойкая HPL-столешница с антистатическим покрытием;
- только качественные и профессиональные материалы;
- производство РФ.

Удобство. Надежность. Стиль.

Каждый диспетчерский пульт «АТЛАНТ» изготавливается по индивидуальному проекту. Перед отправкой к клиенту осуществляется полная предварительная сборка диспетчерского пульта, что гарантирует высокое качество поставляемисто излегия

> Pult-atlant.ru Pultatlant.ru sales@pult-atlant.ru +7 495 956 21 14

Продолжаются работы по совершенствованию методов и способов контроля состояния электрических машин в процессе эксплуатации, повышению их надежности.


На Сессии были обсуждены 26 докладов. Ниже приведен обзор наиболее интересных из них, на взгляд авторов.

Доклад A1-101 (США): Hybridizing Gas Turbine with Battery Energy Storage: Performance and Economics [Совместное функционирование газовых турбин с аккумуляторными хранилищами энергии: функциональные и экономические показатели] Miller N.W., Kaushik V., Heinzmann J., Frasier J., General Electric Company, Southern California Edison Company

В этом докладе рассматривается одна из наиболее важных проблем, которая стоит перед электрогенерирующими компаниями, вынужденными работать в условиях очень высокой и продолжающей увеличиваться доли возобновляемой энергии, поступающей на рынок (рис. А1-101-1). Наличие относительно дешевых возобновляемых источников энергии привело к закрытию крупных генерирующих мощностей, работающих на ископаемом топливе. Тем не менее все еще существует требование к обеспечению работы традиционных источников энергии, например, газотурбинных генераторов, с целью генерации энергии в случае недостаточной выработки мощности возобновляемыми источниками энергии и/или для стабилизации электроэнергетической системы. В докладе продемонстрирована сложность упомянутой проблемы на примере рынка электроэнергии Калифорнии. Одним из возможных решений, предложенных в этом документе, является использование газотурбинной установки, совмещенной

КРИВЫЕ СУТОЧНЫХ НАГРУЗОК С ВОЗОБНОВЛЯЕМЫМИ ИСТОЧНИКАМИ ЭНЕРГИИ

10

ГИБРИД БАТАРЕИ И ГАЗОВОЙ ТУРБИНЫ В ПРОМЫШЛЕННОЙ ЭКСПЛУАТАЦИИ

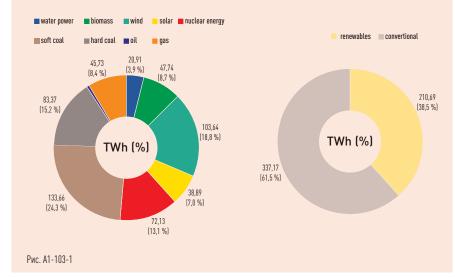
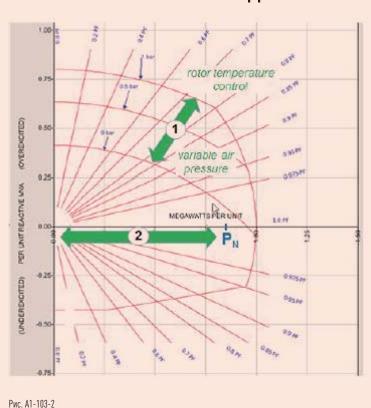


Рис. А1-101-2


с накопителем энергии на базе аккумуляторной батареи. В докладе приведено подробное описание первой установленной системы подобного рода (рис. A1-101-2) и обсуждение экономических и функциональных показателей системы.

Доклад A1-103 (Германия):
Development, Test and Validation
of new Generator Product Line
for current and future operational
regimes [Разработка, тестирование
и проверка новой линейки генерирующего оборудования для работы

ВЫРАБОТКА ЭЛЕКТРОЭНЕРГИИ В ГЕРМАНИИ В ЯНВАРЕ 2017 Г.

ГИБКАЯ ДИАГРАММА МОЩНОСТИ ПРИ РЕГУЛИРУЕМОМ ОХЛАДИТЕЛЕ

в существующих и перспективных эксплуатационных режимах] Braam J.-H.. Siemens AG

На рис. А1-103-1 приведены объемы выработки электрической энергии для Германии на январь 2017 г. Как следует из рисунка, объем выработки электроэнергии за счет возобновляемых источников энергии составляет 38,5 %, в том числе за счет ветрогенерации — 18,8 %.

В докладе А1-103 дано описание новой линейки генераторов, статорные обмотки которых выполнены с водяным охлаждением, тогда как роторы и сердечники статоров имеют воздушное охлаждение. Такая конфигурация оборудования была выбрана с целью минимизации механического износа и температурного старения обмоток генераторов вследствие повышенного уровня циклической нагрузки в традиционном электрогенерирующем оборудовании, вызванного протеканием тока в направлении возобновляемых источников энергии с характерными периодическими изменениями. С целью уменьшения циклических температурных изменений в обмотке статора была выбрана система водяного охлаждения. Для охлаждения сердечника и ротора подается воздух под давлением, что позволяет исключить необходимость использования водорода и соответствующих систем уплотнения вала, исходя из условий обеспечения безопасности, а также для уменьшения требований к техническому обслуживанию. Для оптимизации температурных режимов и эффективности система водяного охлаждения была спроектирована таким образом, чтобы предусмотреть возможность изменения расхода в зависимости от тока статора, в то время как воздушная система находится под повышенным давлением в соответствии с величинами тока ротора и коэффициента мощности (рис. А1-103-2).

Согласно приведенным в докладе данным, первая установка была протестирована на заводе и продемонстрировала функциональные показатели в соответствии с ожиданиями и стандартами проектирования.

Предполагается выпустить линейку генераторов в диапазоне мощностей, которые в настоящее время в основном используются в конструкциях с полным косвенным воздушным и водородным охлаждением.

Авторы доклада ссылаются на ту же DUCK CURVE, что и в докладе A-101 для обоснования дополнительных требований к генераторам в связи с изменяющимися режимами работы генерирующего оборудования в энергосистемах (необходимость реализации маневренных режимов и увеличивающееся использование возобновляемых источников энергии).

Следует также отметить, что основными задачами, которые ставит оператор German Energiewende, являются:

- обеспечение продажи 55-60 % электроэнергии, получаемой от ВИЭ, к 2035 г.;
- полное выведение из работы атомных электростанций к 2020 г.;
- снижение на 50 % потребности в электрической энергии к 2050 г.;
- разработка мощных накопителей энергии, «умных» сетей и «гибких» (работающих в переменных режимах) тепловых энергоблоков;
- обеспечение использования 6 млн электромобилей к 2030 г.

Доклад A1-104 (Франция): Impact of Grid Code Evolution on the Design of the Generators for Nuclear Plants (half speed, power above 800 MVA) [Влияние развития сетевых стандартов на конструкцию генераторов

ДИАГРАММА ЭКСПЛУАТАЦИИ ТУРБОГЕНЕРАТОРА 2000 МВА ПРИ ОТКЛОНЕНИЯХ НАПРЯЖЕНИЯ И ЧАСТОТЫ U / Un (%) Sn = 2000 MVA U/F = 1.13 Рис. А1-104-1

для атомных электростанций (половинная скорость, мощность свыше 800 MBA)]
Chay P., Buquet M., Wahdame B.,

Fernagut V., Magois S., General

Electric EDF

12

хорошо проработанная оценка эксплуатационных проблем и воздействий, связанных с требованиями сетевого стандарта ENTSO-E к синхронным генераторам

В докладе А1-104 приведена

большой мощности (>800 MBA). К ним относятся общие требования для электрогенерирующих модулей типа D (диапазоны напряжения и частоты), способность к поддержанию генераторного режима в случае возникновения отказов (FRT), более быстрая реакция системы возбуждения, стойкость к изменениям частоты в соответствии с заданной скоростью изменения частоты (ROCOF) и способность поддержания генераторного режима при провале напряжения сети (LVRT).

По мере того как рабочая точка перемещается от номинальных значений напряжения и частоты, может наблюдаться значительное повышение температуры сердечника статора генератора и обмотки возбуждения, что может привести к повреждению сердечника статора генератора и изоляции обмоток, оказывая тем самым негативное влияние на срок службы генерирующего оборудования. Таким образом, как правило, рекомендуется ограничить степень, длительность и частоту возникновения таких эксплуатационных условий (рис. А1-104-1). Тем не менее работа генерирующих агрегатов в определенных эксплуатационных пределах может быть затруднена, и решение заключается в использовании оборудования с избыточными размерами или переключающих устройств для регулировки напряжения под нагрузкой. Для выработки окончательного решения может потребоваться достижение определенного компромисса между оператором сети, владельцем электростанции и изготовителем оборудования.

Доклад A1-106 (Великобритания): Calculation of Rotor Eddy Current Losses in High-Speed PM Synchronous Generators using Transfer Matrices [Расчет потерь на вихревые токи в роторах высокоскоростных синхронных

генераторов на постоянных магнитах с использованием метода передаточных матриц]
Anglada J.R., Sharkh S.M. University of Southampton United Kingdom,
M.A. Yuratich TSL Technology Ltd.

В докладе А1-106 приведено описание аналитического метода расчета потерь на вихревые токи в роторах высокоскоростных синхронных генераторов на постоянных магнитах с использованием метода передаточных матриц, который используется в качестве более быстрого и практичного способа итерационного проектирования по сравнению с медленным, но более точным методом конечных элементов. В качестве примера приводится генератор на постоянных магнитах мощностью 50 кВт и скоростью вращения 65 000 об./мин, при этом демонстрируется хорошая корреляция между методом передаточных матриц и методом конечных элементов при расчете потерь на вихревые токи как под нагрузкой, так и без нагрузки.

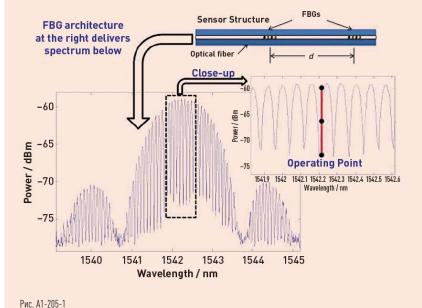
Доклад A1-211 (Индия): Generators as Synchronous Condensers to Meet Dynamic System Requirement by Renewable Mix — Indian scenario [Использование генераторов в качестве синхронных компенсаторов для выполнения динамических требований к системе при работе в условиях смешанной генерации с использованием возобновляемых источников энергии — Индийский сценарий] Chaturvedi D.K., Gupta A.K., NTPC Ltd.

В докладе A1-211 рассматриваются вопросы использования существующих, выведенных из эксплуатации генераторных установок и стратегических резервных генераторов в качестве синхронных компенсаторов для уменьшения проблем с компенсацией реактивной мощности в энергосистеме Индии, возникших

вследствие быстрого развития электрогенерирующих мощностей на базе ветряных и солнечных электростанций. В качестве конкретного примера приведено описание трех генераторов с водородным охлаждением мощностью 95 МВт и даны рекомендации по переключению генератора для работы в качестве синхронного компенсатора. Также рассматриваются преимущества использования вращающихся машин для компенсации реактивной мощности в сравнении со статическими тиристорными компенсаторами. Показаны преимущества использования синхронных компенсаторов в данном случае.

Доклад A1-202 (Австрия): A Study of the Propagation Behaviour of Partial Discharge Pulses in the High-Voltage Winding of Hydro Generators [Анализ режимов распространения импульсов частичных разрядов в высоковольтных обмотках гидрогенераторов]
Oettl T., Engelen C., OMICRON electronics GmbH, Binder E., Consultant, Kessler T., Vorarlberger Illwerke AG

В докладе А1-202 приведено описание исследования распространения импульсов частичных разрядов, выполненного на двух обмотках статора, подлежащих перемотке, при различных номинальных величинах напряжения и мощности. Заявленной целью этого исследования являлась разработка методов надежной идентификации частичных разрядов в различных частях обмотки статора. Ключевым элементом данного метода является представление «матрицы затухания», построенной на основании набора выбранных измерений частоты. Цель метода заключается в устранении хорошо известного процесса затухания и дисперсии высокочастотных импульсов частичных разрядов в ходе их распространения по обмотке статора. Посредством


изменения амплитудно-частотной характеристики детектора авторы доклада A1-202 продемонстрировали, что этот метод может использоваться для идентификации специфических характеристик дефектов в обмотке.

Доклад A1-205 (Kaнaдa): Novel Fiber Optic Technology Monitors in-Slot Vibration and Hot Spots in an Air-Cooled Gas Generator [Использование современной оптоволоконной технологии для мониторинга вибрации в пазах и обнаружения мест локального перегрева в газогенераторных агрегатах с воздушным охлаждением] Kung P., et al., QPS Photronics Incorporation

В докладе А1-205 представлены результаты измерения вибрации и температуры, полученные с использованием оптоволоконных датчиков, установленных в газотурбинных генераторах с воздушным охлаждением. Физические основы для каждого из таких датчиков подробно описаны в докладе (рис. А1-205-1). Получены данные измерений температуры в пазах (рис. А1-205-2) и концевых обмотках, а также параметры вибрации в изолирующих прокладках, выводах концевых обмоток и нейтральной выводной шине. Наблюдалась хорошая корреляция измеренных температур между новым оптоволоконным датчиком, предназначенным для распределенного измерения температуры, и традиционными резистивными датчиками температуры, устанавливаемыми в пазах. После успешного испытания на этом генераторе с воздушным охлаждением планируется дальнейшее тестирование на машине с водородной системой охлаждения.

В докладе A1-205 приведен обзор параметров, которые могут быть измерены на работающем генераторе и могут использоваться для иденти-

ПРОВЕРКА ПРИМЕНИМОСТИ ОПТОВОЛОКОННОГО ДАТЧИКА ДЛЯ ИЗМЕРЕНИЯ ДЕФОРМАЦИЙ И ТЕМПЕРАТУРЫ В СТАТИЧЕСКИХ И ДИНАМИЧЕСКИХ РЕЖИМАХ

фикации дефектов на ранних этапах развития повреждения с целью применения программы технического обслуживания, исходя из технического состояния. В докладе рассмотрены следующие параметры: магнитный поток для закороченных витков обмотки ротора; вибрация концевых обмоток статора; вибрация вала и подшипников; воздушный зазор между ротором и статором (для генераторов с приводом от гидравлической турбины). В этом докладе продемонстрировано, что в зависимости от используемой технологии различные рабочие параметры оказывают разное влияние на результаты мониторинга, и некоторые из них оказывают значительное воздействие. Были рассмотрены три конкретных случая, посредством

УСТАНОВКА ПАЗОВОГО ДАТЧИКА ВИБРАЦИИ

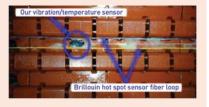
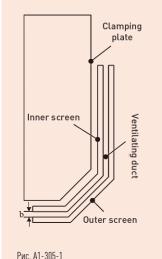
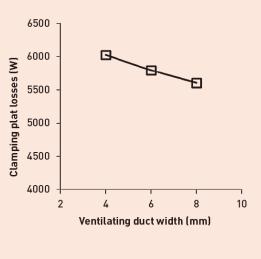


Рис. А1-205-2


которых была подтверждена чувствительность измеряемых параметров (вибрация торцевых обмоток, величина воздушного зазора и вибрация)


к изменению условий эксплуатации (температура обмоток статора, скорость и нагрузка, соответственно).

Доклад A1-210 (Хорватия):
Application of Differential Magnetic
Field Measurement (DMFM method)
in Winding Fault Detection of AC
Rotating Machines as Part of Expert
Monitoring Systems [Применение
метода измерения дифференциального магнитного поля (метод DMFM)
для обнаружения коротких замыканий в обмотках вращающихся машин переменного тока в качестве
экспертных систем мониторинга]
Elez A., Študir J., Tvorić S., KONČAR
Generators and Motors, KONČAR
Electrical Engineering Institute

В докладе A1-210 описан метод обнаружения коротких замыканий в обмотках индукционных и синхронных машин с использованием двух катушек обнаружения, смонтированных на зубьях статора со смещением на один полюсный шаг и подключенных последовательно таким образом, что сигналы наведенного напряжения нейтрали-

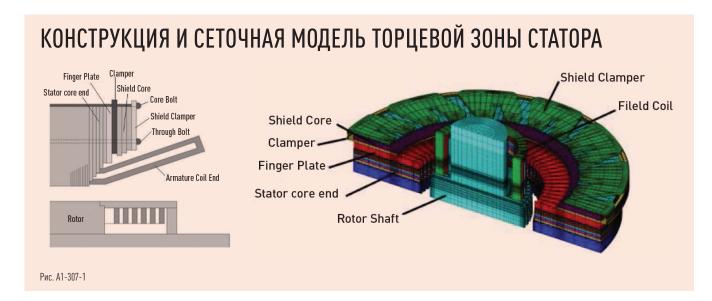
КОНСТРУКЦИЯ МЕДНОГО ЭКРАНА И ЗАВИСИМОСТЬ ПОТЕРЬ В ЭКРАНЕ ОТ ВЕНТИЛЯЦИОННОГО ЗАЗОРА

зуются (рис. А1-210-1). Разрыв шины ротора или короткое замыкание между витками обмотки приводят к возникновению регистрируемого отклонения сигнала напряжения

расположения коротких замыканий Проверка этой методики измерения дифференциального магнитного поля производилась с помощью моделирования по методу конечных элементов, а также посредством лабораторных испытаний. Этот метод позволяет упростить процесс интерпретации сигналов в сравнении с существующими методами с одинарной обмоткой и, как было заявлено, обладает большей чувствительностью. Данные представлены только для асинхронных машин, но также применимы к синхронным машинам с явно выраженными полюсами и турбогенераторам.

в соответствии с числом и местом

Доклад A1-305 (Китай): Analysis on the Effect of Screen Ventilation Width on End Flux Distribution and Eddy Current Losses of Turbo-generator [Анализ влияния ширины вентиляционного зазора между экранами на распределение торцевого магнитного потока и потери на вихревые токи в турбогенераторе] Wang L., Sun Y., Kou B., Harbin


СХЕМА РАСПОЛОЖЕНИЯ ДАТЧИКОВ НА ЗУБЦАХ

СТАТОРА И РЕЗУЛЬТАТЫ КОНТРОЛЯ РОТОРА

1— с повреждением в роторе; 2— без повреждений

Рис. А1-210-1

-3

Electric Machinery Co., Ltd. School of Electrical Engineering and Automation, Harbin Institute of Technology, College of Electrical and Electronic Engineering, Harbin University of Science and Technology

В этом докладе представлены результаты исследования потерь на вихревые токи в сердечнике статора с установленным электромагнитным экраном генератора мощностью 330 МВт. В исследовании рассматривался электромагнитный экран, выполненный из двух слоев меди с промежутком между слоями, который использовался в качестве вентиляционного канала, размеры которого изменялись для изучения общего воздействия на эффективность экранирования и результирующие потери (рис. А1-305-1 на с. 15).

Было достигнуто уменьшение потерь в зажимной пластине на 7 % в случае использования экрана с большим промежутком за счет незначительного увеличения потерь в электромагнитном экране.

Доклад A1-307 (Япония): Loss Reduction by Large-Scale Electromagnetic Analysis for Turbine Generators [Уменьшение потерь посредством комплексного анализа электромагнитных полей] Kometani H., Motoyoshi K., Sora N., Maeda S., Tanaka K., Mitsubishi Electric Corporation

В этом докладе рассматривается большая модель электромагнитных полей, построенная по методу конечных элементов, которая использовалась для анализа потерь в различных компонентах генератора мощностью 900 МВА с косвенной водородной системой охлаждения. По результатам анализа были предложены конструктивные решения, направленные на снижение уровня потерь, которые могут применяться для улучшения общей эффективности генератора. Были рассмотрены такие компоненты и конструктивные решения, которые включают в себя разрезание торцевых пакетов сердечника статора, применение многослойного электромагнитного экрана, использование немагнитных материалов в конструкции корпуса поблизости от концевых обмоток статора и подключений фазы, концевые обмотки на стержнях статора из изолированных проводников, скрученных по принципу Ребеля, а также повышение эффективности контактных сопротивлений между пазовыми клиньями ротора и бандажным кольцом. Конструкция и сеточная модель торцевой зоны

статора представлены на рис. A1-307-1. В докладе приведена оценка потенциала уменьшения потерь для каждого определенного компонента агрегата в целом.

Доклад A1-308 (Испания): Reactive Power Capability of Large Hydro Generators and the European Grid Code Requirements with Respect to Voltage Stability [Допустимая величина реактивной мощности для крупных гидрогенераторов и требования европейского сетевого стандарта применительно к стабильности напряжения] Rouco L., Universidad Pontificia Comillas, Perán F., Iberdrola

В докладе А1-308 приведен отчет об исследованиях, проведенных с целью определения способности гидрогенератора мощностью 65 МВА отвечать требованиям, установленным для верхней границы реактивной мощности, согласно недавно одобренному европейскому сетевому стандарту, чувствительности применительно к напряжению в точке подключения, а также для определения параметров переключателя выходных обмоток трансформатора.

В европейском сетевом стандарте были представлены требования

относительно стабильности напряжения, сформулированные в виде верхней границы напряжения в зависимости от соотношения Q/P_{мах} в точке подключения; этот стандарт должен быть имплементирован на национальном уровне соответствующими Системными операторами. Эти требования отличаются от традиционных требований к допустимой реактивной мощности на выводах генератора, которые

Рис. А1-309-1

указаны в стандартах на проектирование, например, в МЭК 60034-3, IEEE C50.13 и C50.12.

В докладе приведена оценка способности генератора к подаче реактивной мощности в точке подключения повышающего трансформатора, как это предусмотрено в настоящее время новыми требованиями сетевого стандарта. В докладе приведено заключение,

to cancel flux link

ИЗ ГОСТА 27471-87 МАШИНЫ ЭЛЕКТРИЧЕСКИЕ ВРАЩАЮЩИЕСЯ

ТЕРМИНЫ 1. ОБЩЕЕ ПОНЯТИЕ

Вращающаяся электрическая машина

Электротехническое устройство, предназначенное для преобразования энергии на основе электромагнитной индукции и взаимодействия магнитного поля с электрическим током, содержащее по крайней мере две части, участвующие в основном процессе преобразования и имеющие возможность вращаться или поворачиваться относительно друг друга.

2. ОСНОВНЫЕ ВИДЫ ВРАЩАЮЩИХСЯ ЭЛЕКТРИЧЕСКИХ МАШИН

Электромашинный генератор

Вращающаяся электрическая машина, предназначенная для преобразования механической энергии в электрическую.

Вращающийся электродвигатель

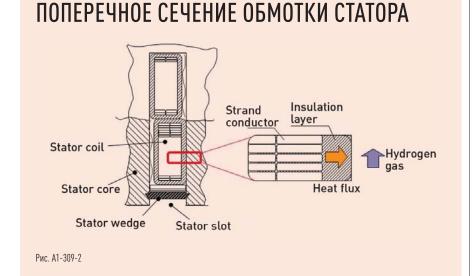
Вращающаяся электрическая машина, предназначенная для преобразования электрической энергии в механическую.

Электромашинный преобразователь

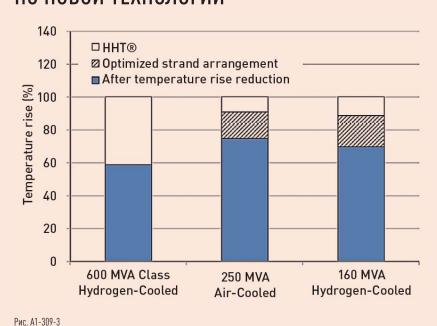
Вращающаяся электрическая машина, предназначенная для изменения параметров электрической энергии.

Электромашинный компенсатор

Синхронная машина, предназначенная для генерирования или потребления реактивной мощности.


ОПТИМИЗАЦИЯ ЭЛЕМЕНТАРНЫХ ПРОВОДНИКОВ ОБМОТКИ CTATOPA

Leakage flux


Strand
in bottom
bar

Circulating current loss
Countermeasure
flux

Circulating current los

УМЕНЬШЕНИЕ ПРЕВЫШЕНИЯ ТЕМПЕРАТУРЫ ПО НОВОЙ ТЕХНОЛОГИИ

что, если генератор соответствует текущим требованиям, наложенным Системным оператором, то этот генератор не может работать исключительно в области рабочих режимов, предусмотренных в настоящее время европейским сетевым стандартом.

Доклад А1-309 (Япония): Development of Large Indirectly Hydrogen-cooled Turbine Generator and Associated Technologies [Разработка турбогенераторов большой мощности с косвенной водородной системой охлаждения и связанных технологий] Muramatsu S., Takahashi K., Onoda M., Tanaka K., Hattori K., Mitsubishi Hitachi Power Systems, Ltd.

В этом докладе приведено описание опыта применения трех базовых технологий, необходимых для разработки генератора мощностью 900 МВА с косвенной водородной системой охлаждения; приведенные результаты также могут применяться для перемотки / модернизации генераторов с целью повышения выходной мощности и эффективности. К таким технологиям относятся применение главной изоляции стенок стержней статора из материала с высокой теплопроводностью (ННТ), оптимизированная транспозиция проводов по принципу Ребеля (рис. А1-309-1, А1-309-2 на с. 17) и усовершенствование креплений торцевых обмоток статора. В частности, изолирующие материалы с высокой теплопроводностью и оптимизация по принципу Ребеля применялись и были проверены в ходе перемотки генераторов как с водородной, так и воздушной системой охлаждения в диапазоне мощностей от 160 до 600 МВА. Сообщалось о возможности уменьшения величины повышения температуры на стержнях статора до 50 % (рис. А1-309-3) в зависимости от размеров генератора и первоначальной конструкции.

Доклад A1-304 (Россия): Operation Experience of Asynchronized Turbine Generators in the Moscow Power System [Опыт эксплуатации асинхронных турбогенераторов в электроэнергетической системе Москвы] Shakarian Y. G., Sokur P.V., R&D Center FGC UES, JSC, Petrenya Y.K., Pinchuk N.D., Roytgarts M.B., PJSC "Power Machines", Lenyov S.N., Gritsenko A.D., PJSC "Mosenergo", Polyakov F.A., Kuznetsov D.V., Electroservice-NTCG LLC. Russia

В докладе А1-304 приведены данные эксплуатации пяти асинхронизированных турбогенераторов мощностью в диапазоне от 110 до 320 МВт, которые установлены в электроэнергетической системе Москвы в период между 2003 г. и 2009 г. Все асинхронизированные турбогенераторы оснащены двумя обмотками возбуждения, которые могут компоноваться в симметричной или асимметричной конфигурации, при этом асимметричная конфигурация имеет преимущество в плане лучших показателей применительно к потерям возбуждения. Полученные данные продемонстрировали возможности генераторов этого типа работать с увеличенными опережающими коэффициентами мощности, что, таким образом, уменьшает потребность в опережающем коэффициенте мощности на традиционных генерирующих установках, характеризующихся низкими опережающими коэффициентами мощности. Это особенно полезно в условиях плотной локальной электроэнергетической системы московского региона. В настоящее время на стадии рассмотрения находятся поправки касательно изменения тарифов, что приведет к повышению прибыльности эксплуатации оборудования с опережающими коэффициентами реактивной мощности, что сделает эксплуатацию асинхронизированных турбогенераторов коммерчески более привлекательной в будущем.

Cabex энергия успеха

18-я Международная выставка кабельно-проводниковой продукции

19-21 марта 2019 года Москва, КВЦ «Сокольники»

- Кабели и провода
- Кабельная арматура
- Электромонтажные изделия
- Электротехнические изделия
- Оборудование для монтажа, переработки кабеля
- Материалы для производства кабеля

