НОРМИРОВАНИЕ ЭНЕРГОЭФФЕКТИВНОСТИ РАСПРЕДЕЛИТЕЛЬНЫХ ТРАНСФОРМАТОРОВ

АВТОРЫ:

В.Н. ИВАКИН, К.Т.Н., ОАО «ЭЛЕКТРОЗАВОД»

В.Д. КОВАЛЕВ, Д.Т.Н., ОАО «ЭЛЕКТРОЗАВОД»

А.А. МАГНИЦКИЙ, ОАО «ЭЛЕКТРОЗАВОД» начительная доля общих технологических потерь в распределительных сетях, а также в системах электроснабжения промышленных предприятий обусловлена потерями в распределительных трансформаторах. Именно поэтому во всех

развитых странах мира постоянно ужесточаются требования к энергоэффективности таких трансформаторов. Однако отечественная стандартизация, касающаяся требований к распределительным трансформаторам, отстает от общемировых тенденций.

Ключевые слова: энергоэффективность; распределительные трансформаторы; потери короткого замыкания (к.з.); потери холостого хода (х.х.); капитализированная стоимость.

ВВЕДЕНИЕ

Энергосбережение — комплексная задача рационального расходования топливно-энергетических ресурсов, которая стоит перед каждым производителем и потребителем любого вида энергии. Реализация мероприятий по энергосбережению обеспечивает снижение энергоемкости и, соответственно, себестоимости производимой продукции. Применительно к электрической энергии энергосбережение обеспечивается в первую очередь за счет реализации комплекса мероприятий по снижению потерь электроэнергии как при передаче электроэнергии от источника до потребителя, так и в системе электроснабжения потребителя.

Любое крупное промышленное предприятие имеет достаточно сложную систему электроснабжения, включающую в себя трансформаторы, коммутационную аппаратуру, кабельные сети и, довольно часто, устройства компенсации реактивной мощности. Схемы систем электроснабжения обычно проектируются с учетом требования обеспечения надежности электроснабжения производственно-технологического оборудования и вспомогательных служб, например, за счет резервирования. Основные потери в системе электроснабжения промышленного предприятия — потери в трансформаторах. Потери трансформаторов складываются из потерь х.х., которые имеются всегда, когда трансформатор включен в сеть, и нагрузочных потерь (потерь в обмотках). Потери х.х. постоянны во времени и могут меняться в большую сторону по мере старения и износа оборудования. Нагрузочные потери прямо пропорциональны квадрату тока, протекающего в обмотках трансформатора, при 100% загрузке трансформатора они равны потерям к.з. Требование резервирования трансформаторного оборудования приводит к росту потерь х.х.

Пути снижения потерь х.х. трансформаторов таковы:

- увеличение сечений стержней и ярем магнитопроводов, что приводит к непропорциональному увеличению габаритных размеров, массы и стоимости;
- применение для изготовления магнитопроводов специальных марок трансформаторной стали;
- уменьшение толщины пластин магнитопроводов;
- применение для изготовления магнитопроводов аморфных материалов.

Пути снижения нагрузочных потерь трансформаторов таковы:

- увеличение сечений проводников обмотки, что также приводит к непропорциональному увеличению габаритных размеров, массы и стоимости;
- применение материалов повышенной электропроводности, например, сверхпроводящих (но эти технологии пока еще слишком дороги и для распределительных трансформаторов экономически неоправданны).

На сегодняшний день применение аморфных материалов для изготовления магнитопроводов — наиболее перспективное направление энергосбережения применительно к распределительным трансформаторам.

Большинство требований к характеристикам распределительных трансформаторов определяется национальными или международными стандартами. В различных государствах в зависимости от требований соответствие характеристик трансформаторов стандарту может быть обязательным или добровольным. Международные стандарты упрощают обмен продукцией между внутренним и внешним рынками, а также согласовывают уровни требований к продукции в части охраны

окружающей среды, здоровья и безопасности.

К распределительным трансформаторам в Европе применяются три уровня стандартов:

- международные стандарты (ISO, IEC);
- европейские стандарты и нормы (EN, HD);
- национальные стандарты (BSI, NF, DIN, NEN, UNE OTEL).

Стандарт HD 428 «Трехфазные распределительные трансформаторы с рабочей частотой 50 Гц от 50 до 2500 кВА с масляным охлаждением и максимальным напряжением не выше 24 кВ» [1] был принят в 1990 г. и довольно долгое время определял требования к распределительным трансформаторам, выпускаемым в Европе. Стандарт EN 50464-1 [2], разработанный CENELEC и принятый в 2007 г., является логическим развитием стандарта HD 428. В этом стандарте устанавливается пять уровней потерь х.х. и четыре уровня потерь к.з. (табл. 1, 2). Стандарт EN 50464-1 не устанавливает ограничения по сочетанию уровней потерь х.х. и к.з. Этот стандарт действует и в настоящее время. Постановление Совета Европы № 548/2014 от 21.05.2014 [3] устанавливает новые требования к максимальным уровням потерь х.х. и к.з. распределительных трансформаторов. В табл. 3 приведены требования для масляных трансформаторов мощностью от 1 до 3150 кВА, напряжением до 36 кВ Новые требования вводятся в два этапа — с 1 июля 2015 г. и с 1 июля 2021 г. В новом стандарте существенно увеличились требования к потерям х.х. и к.з. распределительных трансформаторов в Европе.

К трансформаторам, выпускаемым отечественными производителями, применяются требования ГОСТ 11920-85 [4] и ГОСТ 27360-87 [5], которые не пересматривались около

Таблица 1

Таблица 2

ПОТЕРИ Х.Х. МАСЛЯНЫХ ТРАНСФОРМАТОРОВ МОЩНОСТЬЮ ДО 2500 кВА И НАПРЯЖЕНИЕМ ДО 24 кВ СОГЛАСНО EN 50464-1

22

Номинальная			Потери х.х., В	г	
мощность, кВА	$A_{_{o}}$	B _o	C _o	$D_{_{o}}$	E。
100	145	180	210	260	320
160	210	260	300	375	460
250	300	360	425	530	650
400	430	520	610	750	930
630	560	680	800	940	1200
1000	770	940	1100	1400	1700
1250	950	1150	1350	1750	2100
1600	1200	1450	1700	2200	2600
2500	1750	2150	2500	3200	3500

ПОТЕРИ К.З. МАСЛЯНЫХ ТРАНСФОРМАТОРОВ МОЩНОСТЬЮ ДО 2500 кВА И НАПРЯЖЕНИЕМ ДО 24 кВ СОГЛАСНО EN 50464-1

Номинальная	Потери к.з., Вт				
мощность, кВА	A_k	B_{k}	C _k	D _k	
100	1250	1475	1750	2150	
160	1700	2000	2350	3100	
250	2350	2750	3250	4200	
400	3250	3850	4600	6000	
630	4800	5600	6750	8700	
1000	7600	9000	10 500	13 000	
1250	9500	11 000	13 500	16 000	
1600	12 000	14 000	17 000	20 000	
2500	18 500	22 000	26 500	32 000	

30 лет. Требования, предъявляемые к потерям в масляных трансформаторах, согласно ГОСТ 27360-87, и диапазоны реальных значений выпускаемых отечественной промышленностью трансформаторов приведены в табл. 4 [6]. Анализ этих данных показывает, что фактически все трансформаторы, выпускаемые

отечественными производителями, имеют практически максимальные значения в части потерь к.з. и соответствуют требованиям ГОСТов только с учетом допуска +10%.

Правительством РФ 17.06.2015 принято постановление № 600 «Об утверждении перечня объектов

и технологий, которые относятся к объектам и технологиям высокой энергетической эффективности» [7], в котором к трансформаторам электрическим силовым (согласно коду Общероссийского классификатора основных фондов — 143115010 Трансформаторы электрические силовые мощные) предъявляются требования по потерям х.х. и к.з., приведенные в табл. 5.

Организациям, которые закупают оборудование, относящееся к объектам и технологиям высокой энергетической эффективности, в соответствии с постановлением № 600 предоставляются следующие льготы:

- 1. инвестиционный налоговый крелит:
- 2. право налогоплательщиков применять к основной норме амортизации специальный коэффициент, но не выше 2:
- 3. освобождение от налогообложения организаций в отношении вновь вводимых объектов, имеющих высокую энергетическую эффективность, в течение трех лет со дня постановки такого имущества на налоговый учет.

Энергоэффективность трансформатора оценивается через отношение потерь в трансформаторе (P_{los}) к проходящей через него мощности и определяется через коэффициент энергоэффективности ($K_{\rm эфф}$), который по сути соответствует коэффициенту полезного действия (КПД). Существуют два определения $K_{\rm эфф}$.

В странах Северной Америки (США, Канада) применяется определение по стандартам IEEE, ANSI:

$$K_{add} = S_{out} / (S_{out} + P_{los}) \tag{1}$$

В Европе и странах, использующих стандарт IEC (МЭК), применяют следующее определение:

$$K_{\phi\phi} = (S_{input} - P_{los}) / S_{input}$$
 (2)

МАКСИМАЛЬНЫЕ УРОВНИ ПОТЕРЬ Х.Х. И К.З. МАСЛЯНЫХ РАСПРЕДЕЛИТЕЛЬНЫХ ТРАНСФОРМАТОРОВ МОЩНОСТЬЮ ОТ 1 ДО 3150 кВА И НАПРЯЖЕНИЕМ ДО 36 кВ В СООТВЕТСТВИИ С ПОСТАНОВЛЕНИЕМ СОВЕТА ЕВРОПЫ ОТ 21.05.2014 № 548/2014

Номинальная	Введены с 1	июля 2015 г.	Вводятся с 1 июля 2021 г.	
мощность, кВА	потери х.х., Вт	потери к.з., Вт	потери х.х., Вт	потери к.з., Вт
≤ 25	A _。 (70)	C _k (900)	A _. -10% (63)	A _k (600)
50	A _。 (90)	C _k (1100)	A _. -10% (81)	A _k (750)
100	A _。 (145)	C _k (1750)	A _. -10% (130)	A _k (1250)
160	A _。 (210)	C _k (2350)	A _. -10% (189)	A _k (1750)
250	A _。 (300)	C _k (3250)	A _. -10% (270)	A _k (2350)
315	A _。 (360)	C _k (3900)	A _o -10% (324)	A _k (2800)
400	A _. (430)	C _k (4600)	A _. –10% (387)	A _k (3250)
500	A _。 (510)	C _k (5500)	A _. -10% (459)	A _k (3900)
630	A _。 (600)	C _k (6500)	A _. -10% (540)	A _k (4600)
800	A _。 (650)	C _k (8400)	A _. -10% (585)	A _k (6000)
1000	A _。 (770)	C _k (10 500)	A _. -10% (693)	A _k (7600)
1250	A _。 (950)	B _k (11 000)	A _o -10% (855)	A _k (9500)
1600	A _。 (1200)	B _k (14 000)	A _. -10% (1080)	A _k (12 000)
2000	A _。 (1450)	B _k (18 000)	A _o -10% (1305)	A _k (15 000)
2500	A _。 (1750)	B _k (22 000)	A _o -10% (1575)	A _k (18 500)
3150	A _。 (2200)	B _k (27 500)	A _. -10% (1980)	A _k (23 000)

Таблица 3

Разница в определениях заключается в том, что в качестве базисной Грасчетной номинальной мошности трансформатора) по формуле (1) принимается выходная мощность трансформатора (S___), а по формуле (2) — входная (S_{input}) . Расчеты К... по формулам (1) и (2) близки, но не одинаковы. Как отмечалось выше, потери в трансформаторе (Р складываются из потерь х.х. (Р....) и потерь к.з. (Р, з). Р, характеризуют потери в магнитопроводе, не зависят от нагрузки трансформатора и практически постоянны во времени, Р характеризуют потери в обмотках и зависят от нагрузки трансформа-

$$P_{\kappa,3.}(\alpha) = \alpha^2 \cdot P_{\kappa,3.} , \qquad [3]$$

где а — коэффициент загрузки трансформатора; при этом

 $\alpha = S/S_{_{\!\it H}} = I/I_{_{\!\it H}}$, где $S,\,S_{_{\!\it H}},\,I,\,I_{_{\!\it H}}$ — текущее и номинальное значения мощности и тока трансформатора.

При анализе $K_{_{\rm эф}}$ далее мы будем использовать определение, принятое МЭК, т.е. выражение (2).

С учетом формулы (3) выражение (2) примет вид:

$$K_{\phi\phi}(\%) = [1 - \alpha^2 \cdot P_{\kappa.s.} + P_{x.x.}]/(\alpha \cdot S_n) \cdot 100\%$$
 [4

$$\alpha_{_{M}} = \sqrt{\frac{P_{_{XX}}}{P_{_{KS}}}}$$
 [5]

и равно

$$K_{3\phi\phi M} = (1 - 2 \cdot \sqrt{P_{\kappa 3} \cdot P_{xx}} / S_{y}) \cdot 100\%$$
 [6]

Как следует из формулы (4), коэффициент энергоэффективности определяется значениями потерь х.х. и к.з., зависит от нагрузки трансформатора и достигает максимального значения $K_{\text{эфь}}$ при нагрузке $\mathfrak{a}_{\text{м}}$.

На рис. 1 и 2 представлены зависимости коэффициентов энергоэффективности от нагрузки для трансформаторов разной номинальной мощности, соответствующих требованиям ЕС (постановление № 548/2014) и требованиям ГОСТ 27360-87.

В США распределительные трансформаторы должны соответствовать требованиям стандарта EERE-2010-BT-STD-0048-0762, опубликованного министерством энергетики США (DOE) в 2013 г. под регистрационным номером 10 CFR Part 431 «Energy Conservation Program: Energy Conservation Standards for Distribution Transformers; Final Rule» [8]. Стандарт определяет требования не к потерям к.з. и х.х. распределительных трансформаторов разной мощности, а к коэффициенту энергоэффективности трансформаторов при нагрузке 50%. Требования стандарта действуют с 2016 г. Следует заметить, что этот стандарт устанавливает более жесткие требования к энергоэффективности трансформаторов по сравнению с принятым министерством энергетики США в 2007 г. аналогичным стандартом, действующим с 2010 г.

Анализ зависимостей коэффициента энергоэффективности от коэффициента загрузки трансформатора показывает, что максимальный

коэффициент энергоэффективности трансформаторов, изготавливаемых по требованиям ЕС, достигается при значениях нагрузки около 30%, а изготавливаемых по требованиям ГОСТ 27360-87 достигается при значениях нагрузки около 45%. Как отмечено выше, в США требования к коэффициенту энергоэффективности маслонаполненных распределительных трансформаторов задаются при нагрузке 50%. Следует заметить, что требования к коэффициенту энергоэффективности низковольтных (напряжение ВН менее 1,1 кВ) сухих распределительных трансформаторов задаются при нагрузке 35%, так как трансформаторы данного типа в основном применяются для электроснабжения отдельных домохозяйств с низким значением нагрузки.

На рис. З показаны зависимости максимального значения коэффициента энергоэффективности от номинальной мощности трехфазного маслонаполненного распределительного трансформатора в соответствии со стандартами США, ЕС и России. Как видно из рис. 3, коэффициент энергоэффективности увеличивается с ростом мощности трансформатора, причем трансформаторы, соответствующие требованиям ГОСТ, имеют существенно меньшую энергоэффективность, чем трансформаторы той же мощности, соответствующие требованиям ЕС и США.

С целью повышения энергетической эффективности применяемых трансформаторов на объектах ПАО «Россети» этой компанией разрабатывается отраслевой стандарт «Трансформаторы силовые распределительные 6–10 кВ. Требования к уровню потерь холостого хода и короткого замыкания» [9]. Проект этого стандарта, по сути, повторяет более легкие, чем устанавливаемые постановлением Совета Европы, требования стандарта EN 50464-1, поэтому энергетическая эффектив-

ПОТЕРИ Х.Х. И К.З. СОГЛАСНО ГОСТ 27360-87 И ДИАПАЗОНЫ РЕАЛЬНЫХ ЗНАЧЕНИЙ ПОТЕРЬ ТРАНСФОРМАТОРОВ ОТЕЧЕСТВЕННЫХ ПРОИЗВОДИТЕЛЕЙ

Номинальная мощность, кВА	Потери х.х. по ГОСТ 27360- 87, Вт	Потери х.х. выпускаемых трансформато- ров, Вт	Потери к.з. по ГОСТ 27360- 87, Вт	Потери к.з. выпускаемых трансформато- ров, Вт
63	240	210-340	1220	1270-1480
100	300	260-400	1750	1970-2400
160	430	360-560	2350	2650-3300
250	580	530-580	3250	3700-4500
400	830	750-870	4600	5400-6000
630	1200	1030-1240	6500	7450-8500
1000	1600	1400-1600	10 500	10 500-13 000
1600	2200	2100-2150	16 000	16 500

Таблица 4

ТРЕБОВАНИЯ К ПОТЕРЯМ Х.Х. И К.З. СОГЛАСНО ПОСТАНОВЛЕНИЮ № 600

Номинальная мощность	Количественный показатель энергетической эффективности		
трансформатора, кВА	потери х.х., Вт	потери к.з., Вт	
100	≤ 250	≤ 1750	
160	≤ 375	≤ 2350	
250	≤ 530	≤ 3250	
400	< 650	≤ 4600	
630	≤ 800	≤ 6750	
1000	≤ 1100	≤ 10 500	
1600	≤ 1700	≤ 17 000	
2500	≤ 2450	≤ 25 500	

Таблица 5

ность применяемых трансформаторов будет ниже, чем устанавливаемая для трансформаторов в странах ЕС и США.

Для повышения энергетической эффективности распределительных трансформаторов, выпускаемых в РФ, целесообразно, как и в США, формировать требования к потерям

к.з. и х.х. на основе задаваемых значений коэффициента энергоэффективности с учетом оптимального коэффициента загрузки.

Из формул (5) и (6) можно получить выражения, определяющие значения $P_{\kappa.s.}$ и $P_{x.x.}$ для трансформатора номинальной мощностью $S_{_{\rm H}}$ через значения максимума коэффициента

$$P_{\kappa,3} = (1 - K_{3\phi\phi,M}) \cdot S_{\mu}/2 \cdot \alpha_{M}; \qquad [7]$$

$$P_{rr} = P_{rs} \cdot \alpha_{rs}^{2}. \tag{8}$$

Для примера на рис. 4 представлены зависимости коэффициента энергоэффективности от нагрузки для двух типоисполнений трансформаторов мощностью 100 кВА, имеющих один и тот же $K_{\rm эфф\,M}=99\%$, но для первого типоисполнения — при $a_{\rm M}=20\%$, а для второго — при $a_{\rm M}=50\%$. Значения мощностей потерь х.х. и к.з. этих трансформаторов, рассчитанных по формулам $\{7\}$ и $\{8\}$, при этом будут такими:

$$P_{x.x.} = 100 BT, P_{x.3.} = 2500 BT$$
при $a_{..} = 20\%$;

$$P_{_{\text{x.x.}}} = 250$$
 Вт, $P_{_{\text{к.з.}}} = 1000$ Вт при $\alpha_{_{\text{м}}} = 50\%$.

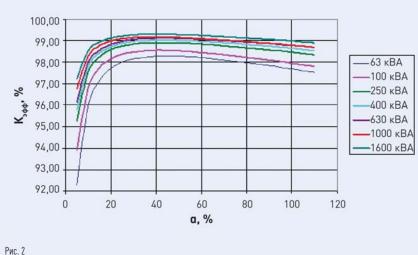
Как следует из приведенных результатов расчетов, обеспечение высокой энергоэффективности трансформаторов при малой нагрузке требует существенного снижения потерь х.х. При этом тот же $K_{_{3фф}}$ обеспечивается при существенно больших значениях потерь к.з.

Известно, что для сетевых трансформаторов средней и большой мощности примерно половина трансформаторов имеют среднюю загрузку 20–50%, а в сетях 6–10 кВ около половины трансформаторов имеют загрузку 10–20% [10]. Максимальная энергоэффективность трансформаторов при такой нагрузке может быть обеспечена только в случае значительного снижения потерь х.х.


Как отмечалось выше, один из путей снижения потерь х.х. в распределительных трансформаторах — применение в качестве материала для изготовления магнитопроводов аморфных сплавов. Аморфные

металлические сплавы — особый класс сплавов, отличающийся от традиционных своей структурой, способом изготовления и свойствами. При обычном охлаждении сплава атомы успевают занять в пространстве положенные им места в соответствии с кристаллической структурой. Если расплав заставить мгновенно затвердеть (со скоростью, превышающей скорость кристаллизации), то его атомы будут вынуждены оставаться при затвердевании на месте. Критическая скорость охлаждения для разных сплавов разная и обычно должна составлять не менее 106 К/с. Легче всего получаются аморфные сплавы благородных металлов (золото, серебро, платина и др.), а также переходных металлов (железо, кобальт, магний, хром, никель и др.) с добавками — аморфообра-

зующими элементами (металлоидами) (углеродом, бором, кремнием, фосфором и др.). В состав аморфного сплава входят железо — 78%, бор — 13%, кремний — 9% и другие компоненты. Расплав, полученный в индукционной печи, выдавливается под давлением нейтрального газа через сопло заданной ширины и затвердевает при соприкосновении с поверхностью вращающегося охлаждаемого тела (холодильника). изготовленного из материала с высокой теплопроводностью (например, из меди). Сплав изготавливают в виде ленты толщиной 15-50 мкм, ширина ленты — 142, 170 или 213 мм


Практически все электромагнитные, механические и потребительские свойства аморфной стали превосходят аналогичные для традиционной

ЗАВИСИМОСТИ КОЭФФИЦИЕНТОВ ЭНЕРГОЭФФЕКТИВНОСТИ ОТ НАГРУЗКИ ДЛЯ ТРАНСФОРМАТОРОВ РАЗНОЙ НОМИНАЛЬНОЙ МОЩНОСТИ, СООТВЕТСТВУЮЩИЕ ТРЕБОВАНИЯМ ЕС (ПОСТАНОВЛЕНИЕ № 548/2014)

ЗАВИСИМОСТИ КОЭФФИЦИЕНТОВ ЭНЕРГОЭФФЕКТИВНОСТИ ОТ НАГРУЗКИ ДЛЯ ТРАНСФОРМАТОРОВ РАЗНОЙ НОМИНАЛЬНОЙ МОЩНОСТИ, СООТВЕТСТВУЮЩИЕ ТРЕБОВАНИЯМ ГОСТ 27360-87

СРАВНИТЕЛЬНЫЕ ДАННЫЕ ПО ПОТЕРЯМ МАСЛЯНЫХ И СУХИХ ТРАНСФОРМАТОРОВ 1000 кВА (50 ГЦ) ФИРМЫ НІТАСНІ С МАГНИТОПРОВОДАМИ ИЗ ОБЫЧНОЙ ТРАНСФОРМАТОРНОЙ И АМОРФНОЙ СТАЛИ

Тип трансформатора	Масл	іяные	Сух	кие
Материал магнитопровода	SiT	AMT	SiT	AMT
Потери х.х., Вт	1212	315	1640	460
Потери к.з., Вт	8326	10 600	7880	8970
Суммарные потери при 50%-й загрузке, Вт	3294	2965	3610	2702
Суммарные потери при 100%-й загрузке, Вт	9538	10 945	9520	9430

анизотропной электротехнической стали, применяемой в современных трансформаторах, за исключением индукции (1,3–1,5 Тесла) и коэффициента заполнения. Удельные магнитные потери на перемагничивание магнитопровода из аморфной стали составляют 0,2–0,25 Вт/кг против 1,15 Вт/кг для электротехнической стали Новолипецкого металлургического комбината.

Приведем некоторые свойства аморфных сплавов:

- более высокая прочность, чем у лучших сортов легированных сталей (до двух раз);
- высокая износостойкость;
- низкая пластичность (в среднем ниже на 30%);
- исключительно высокая коррозионная стойкость;
- более низкая электропроводность, вследствие чего частично или полностью отпадает необходимость в изоляции пластин в пакетах сердечников, что означает уменьшение габаритов и повышение КПД, снижение потерь на токи Фуко;
- более низкая (на два порядка)
 магнитная анизотропия, что приводит к резкому снижению потерь при перемагничивании;
- более высокое значение начальной магнитной проницаемости в широком диапазоне частот.

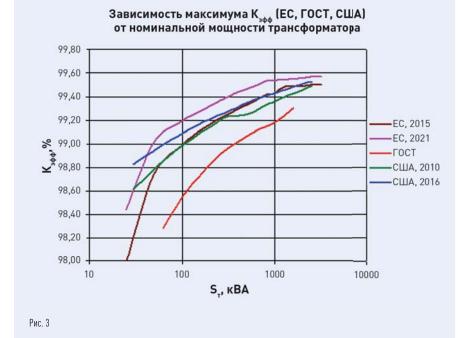
На сегодняшний день технология производства не позволяет получать металлический прокат аморфной стали больших размеров, поэтому применение его в трансформаторах большой мощности пока затруднительно. В основном аморфные сплавы применяются при конструировании и производстве измерительных и распределительных трансформаторов с магнитопроводом из аморфной стали (АМТ) номинальным напряжением до 10 кВ и мощностью до 1000 кВА. В связи с малой толщиной аморфный материал наиболее

пригоден для витой конструкции магнитопровода. Из-за меньшей индукции насыщения аморфной стали по сравнению с электротехнической сталью (ЭТС), а также меньшего коэффициента заполнения сечения магнитопровода (0.8–0.85) по сравнению с этим коэффициентом у трансформаторов с ЭТС (около 0,96), сечения магнитопровода АМТ больше, что приводит к более высоким весогабаритным показателям АМТ по сравнению с трансформаторами с ЭТС. Стоимость распределительных трансформаторов с магнитопроводами из аморфной стали примерно

на 20–30% выше стоимости трансформаторов с традиционной ЭТС.

При проектировании и производстве трансформаторов замена трансформаторной стали аморфным сплавом (АС) дает значительную экономию потерь от вихревых токов в магнитопроводе: магнитные потери у трансформатора с магнитопроводом из аморфного сплава примерно в 4–5 раз меньше, чем у трансформатора из электротехнической стали.

В табл. 6 приведены сравнительные данные по потерям масляных и сухих


трансформаторов 1000 кВА (50 Гц) фирмы Hitachi с магнитопроводами из обычной трансформаторной стали (SiT) и аморфной (AMT) [11]. На рис. 5 представлены зависимости коэффициента энергоэффективности от нагрузки для масляных и сухих трансформаторов 1000 кВА (50 Гц) фирмы Hitachi с магнитопроводами из обычной трансформаторной (SiT) и аморфной (АМТ) стали. Из рис. 5 видно, что К трансформаторов с магнитопроводами из аморфной стали существенно выше, чем у трансформаторов традиционного исполнения, особенно при малых нагрузках. Это делает применение трансформаторов с магнитопроводами из аморфной стали более привлекательным с точки зрения энергоэффективности. При нагрузке, близкой к номинальной, К форматоров сопоставим с К ных трансформаторов. Максимальный эффект от использования аморфного трансформатора достигается в ночное время, когда происходит большое отключение потребителей, а также при работе на нагрузку, значение которой меньше номинальной мощности трансформатора.

ОАО «ЭЛЕКТРОЗАВОД» разработал и изготовил два трансформатора ТМГАМ-630/10-У1 и ТМГАМ-630/6-У1 со следующими параметрами:

- номинальная мощность 630 кВА;
- номинальное напряжение обмотки ВН — 10 000 (6000) В;
- номинальное напряжение обмотки НН — 400 В;
- схема и группа соединений Д/У-11.

На рис. на с. 20 показан один из трансформаторов ТМГАМ-630. Он имеет герметичную конструкцию, магнитопровод бронестержневой, обмотки трансформатора многослойные: для обмотки высшего напряжения применяется алюминиевый провод, для обмотки низшего

ЗАВИСИМОСТИ МАКСИМАЛЬНОГО ЗНАЧЕНИЯ КОЭФФИЦИЕНТА ЭНЕРГОЭФФЕКТИВНОСТИ ОТ НОМИНАЛЬНОЙ МОЩНОСТИ ТРЕХФАЗНОГО МАСЛОНАПОЛНЕННОГО РАСПРЕДЕЛИТЕЛЬНОГО ТРАНСФОРМАТОРА В СООТВЕТСТВИИ СО СТАНДАРТАМИ США, ЕС И РОССИИ

напряжения применяется алюминиевая фольга.

В табл. 7 приведены данные для сравнительного анализа трансформатора ТМГ-630/6 и ТМГАМ-630/6. Трансформатор с магнитопроводом из аморфной стали ТМГАМ-630/6 по сравнению с обычным масляным трансформатором ТМГ-630/6 имеет примерно на 40% большую массу, большие по длине и ширине габариты, требует для заливки на 45% больше масла. Потери х.х. у аморфного трансформатора в 4,7 раза меньше при сопоставимых потерях к.з.

На рис. 6 представлены зависимости коэффициентов энергоэффективности трансформаторов ТМГ-630/6 и ТМГАМ-630/6 от нагрузки в сравнении с действующими и планируемыми к введению стандартами.

Повышение коэффициента энергоэффективности, достигаемое за счет увеличения вложений материалов в конструкцию трансформатора, приводит к увеличению его стоимости. Так, например, по данным, приведенным в статье Н. Тишкина [12], стоимость маслонаполненных распределительных трансформаторов, изготовленных в соответствии с требованиями постановления правительства РФ № 600, оказалась на 11-18% выше стоимости стандартных трансформаторов, соответствующих требованиям ГОСТ 27360-87.

Таким образом, производство распределительных трансформаторов с более высокими показателями энергоэффективности может быть экономически оправдано либо в случае учета численных показателей энергоэффективности при процедуре закупки, либо при принятии новых нормативных документов и законодательном ограничении (с последующим запрещением) производства и продажи оборудования

с показателями, ниже задаваемых в этих нормативных документах.

Экономическую эффективность применения трансформаторов целесообразно определять на основе расчета стоимости владения им в течение срока службы трансформатора или, иными словами, расчета капитализированной стоимости трансформатора, включающей затраты на закупку, эксплуатацию и техническое обслуживание трансформатора с учетом временной стоимости денег [1, 13]. Понятие «временная стоимость денег» состоит в том, что сумма денег, полученная сегодня, имеет более высокую ценность, чем аналогичная сумма денег, полученная в будущем.

При сравнении эффективности применения трансформаторов,

например, при проведении закупок, расчеты можно упростить. У каждого трансформатора есть своя закупочная цена, показатели потерь х.х. и к.з. Такие затраты, как стоимость установки, стоимость технического обслуживания, стоимость выведения из эксплуатации, будут сопоставимы для трансформаторов одной и той же мощности аналогичных конструкций и могут быть исключены из расчета. Только при сравнении трансформаторов различных конструкций, например, сухих трансформаторов с воздушным охлаждением и трансформаторов с масляным охлаждением, эти экономические показатели должны быть приняты к рассмотрению.

Принимая для расчетов только закупочную цену трансформатора и показатели потерь, капитализиро-

ЗАВИСИМОСТИ КОЭФФИЦИЕНТА ЭНЕРГОЭФФЕКТИВНОСТИ ОТ НАГРУЗКИ ТРАНСФОРМАТОРОВ МОЩНОСТЬЮ 100 кВА ПРИ $K_{3\Phi\Phi\,M}=99\%$ ДЛЯ $\alpha_{_{M}}=20\%$ И $\alpha_{_{M}}=50\%$

ванная стоимость (КС) определяется следующим образом:

$$KC = C + A \cdot P_{x.x.} + B \cdot P_{\kappa.s.}, (9)$$

где C — закупочная цена трансформатора;

A — удельная капитализированная стоимость потерь холостого хода;

Р_{х х}. — потери холостого хода;

B — удельная капитализированная стоимость нагрузочных потерь;

Значения удельной капитализированной стоимости потерь х.х. и к.з. (А и В) зависят от ожидаемой загрузки трансформатора и стоимости электроэнергии.

Коэффициенты А и В рассчитываются следующим образом [1, 8, 13, 14]:

$$A = \frac{(1+i)^{n} - 1}{i \cdot (1+i)^{n}} \cdot C_{23} \cdot 8760$$

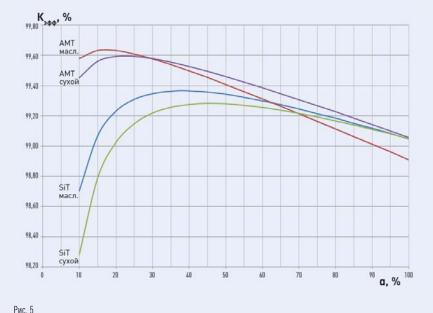
$$B = \frac{(1+i)^{n} - 1}{i \cdot (1+i)^{n}} \cdot C_{23} \cdot 8760 \cdot (\alpha)^{2},$$
[11]

где i — банковская процентная ставка, о.е. / год;

n — срок службы, лет;

 C_{33} — цена 1 кВт·ч электроэнергии, pyб. / кВт·ч;

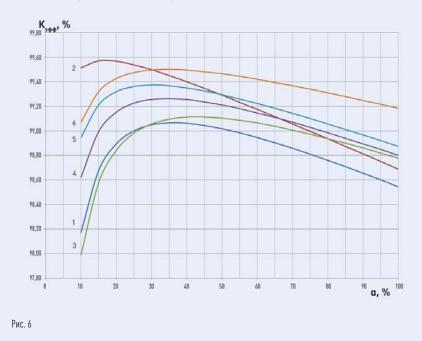
8760 — количество часов в году;


а — коэффициент загрузки трансформатора.

Коэффициенты A и B обеспечивают приведение стоимости потерь за расчетный срок службы к моменту покупки трансформатора.

Сложность расчетов КС состоит в том, что точность оценки ожидаемой нагрузки трансформатора, а также изменение стоимости электроэнергии и процентной

Таблица 7


ЗАВИСИМОСТИ КОЭФФИЦИЕНТА ЭНЕРГОЭФФЕКТИВНОСТИ ОТ НАГРУЗКИ ДЛЯ МАСЛЯНЫХ И СУХИХ ТРАНСФОРМАТОРОВ 1000 кВА (50 ГЦ) ФИРМЫ НІТАСНІ С МАГНИТОПРОВОДАМИ ИЗ ОБЫЧНОЙ ТРАНСФОРМАТОРНОЙ (SIT) И АМОРФНОЙ (АМТ) СТАЛИ

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ТРАНСФОРМАТОРА ТМГ-630/6 И ТМГАМ-630/6

Параметр	TMF-630/6	TMFAM-630/6
Номинальная мощность, кВА	630	630
Номинальное напряжение обмотки ВН, кВ	6	6
Номинальное напряжение обмотки НН, кВ	0,4	0,4
Схема и группа соединения	□/Үн	□/Үн
Потери х.х., Вт	1070	226
Потери к.з., Вт	8100	8040
Длина, мм	1675	1940
Ширина, мм	1040	1235
Высота, мм	1560	1300
Масса масла, кг	380	550
Масса трансформатора, кг	1865	2600

СОПОСТАВЛЕНИЕ КОЭФФИЦИЕНТОВ ЭНЕРГОЭФФЕКТИВНОСТИ ТРАНСФОРМАТОРОВ ТМГ630/6 (КРИВАЯ 1) И ТМГАМ-630/6 (КРИВАЯ 2)
С КОЭФФИЦИЕНТАМИ ЭНЕРГОЭФФЕКТИВНОСТИ, РАССЧИТАННЫМИ ДЛЯ ТРЕБОВАНИЙ
ГОСТ 27360-87 (КРИВАЯ 3), ТРЕБОВАНИЙ
ПОСТАНОВЛЕНИЯ ПРАВИТЕЛЬСТВА № 600
(КРИВАЯ 4), ТРЕБОВАНИЙ ПОСТАНОВЛЕНИЯ
СОВЕТА ЕВРОПЫ № 548/2014, ВВЕДЕННЫМ
С 1 ИЮЛЯ 2015 Г. (КРИВАЯ 5), ТРЕБОВАНИЙ ПОСТАНОВЛЕНИЯ СОВЕТА ЕВРОПЫ
№ 548/2014, КОТОРЫЕ ВВОДЯТСЯ С 1 ИЮЛЯ
2021 Г. (КРИВАЯ 6)

ставки за расчетный срок службы невысока, особенно для стран с переходной экономикой и высокой инфляцией.

Сравнивая зависимости изменения расчетного значения КС от времени для АМТ-трансформатора и трансформатора с ЭТС той же мощности,

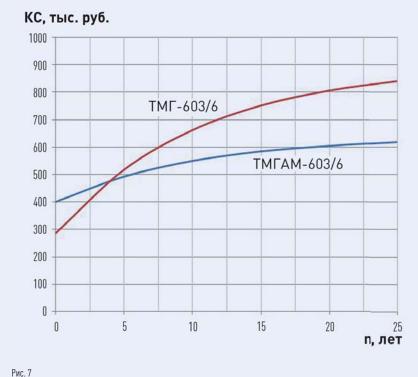
можно определить не только экономическую эффективность применения АМТ, но и срок окупаемости АМТ.

На рис. 7 представлен график расчета зависимости капитализированной стоимости трансформаторов типа АМГ и АМГАМ мощностью 630 кВА от времени использования. Расчеты выполнены при значениях i=10% / год, $C_{_{33}}=5$ руб. / кВт·ч; $\alpha=20\%$. Как видно из рис. 7, эффективность применения АМТ по сравнению с трансформатором с ЭТС за расчетный срок службы 25 лет составила 222 тыс. руб., а срок окупаемости — 4 года.

Расчеты, проведенные применительно к системе электроснабжения ОАО «ЭЛЕКТРОЗАВОД», показали, что при замене существующих трансформаторов на трансформаторы с магнитопроводами из аморфной стали экономия затрат по оплате электроэнергии за счет снижения потерь х.х. трансформаторов при тарифе 5 руб. / кВт-ч позволит окупить затраты на закупку новых аморфных трансформаторов и замену на них существующих трансформаторов за срок не более 10 лет.

По данным из доклада на XXIV конференции ТРАВЭК [14], к настоящему времени общая мощность изготовленных и находящихся в эксплуатации трансформаторов с сердечником из аморфной стали единичной мощности от 25 до 1000 кВА составляет около 450 ГВА. Наибольшее число АМТ эксплуатируется в США, Китае, Индии и Японии. Серийно силовые распределительные трансформаторы с сердечником из аморфной стали выпускаются в США, Канаде, Японии, Индии, Китае, а также в Словакии.

ВЫВОДЫ


1. Развитие европейских и мировых стандартов для распределительных трансформаторов идет

- по пути ужесточения требований к потерям х.х. и к.з.
- 2. Развитие отечественной стандартизации в части требований к распределительным трансформаторам отстает от мировых тенденций.
- 3. Требования к распределительным трансформаторам должны включать требования к коэффициенту энергоэффективности и расчетному коэффициенту загрузки.
- 4. Отечественной промышленностью освоено производство трансформаторов с магнитопроводами из аморфной стали, однако их применение сдерживается существующим порядком проведения закупок, ориентированным на минимальную цену без учета энергоэффективности.
- 5. Для широкого внедрения энергоэффективных трансформаторов целесообразно:
- разработать и ввести в действие национальные стандарты ГОСТ Р, устанавливающие современные уровни требований к энергоэффективности трансформаторов;
- внести изменения в процедуры проведения закупок с целью учета капитализированной стоимости трансформаторов;
- разработать и ввести в действие комплекс мероприятий по ограничению внедрения и эксплуатации трансформаторов, не соответствующих требованиям по энергоэффективности.

ЛИТЕРАТУРА

- 1. Cenelec-HD 428. Three-phase oil-immersed public distribution transformers, 50 HZ, from 50 to 2500 kVA, with higest voltage for equipment not exceeding 24 kV.
- CEI EN 50464-1: 2007-08, Tree-phase oil immersed distribution transformers 50 Hz, from 50 kVA to 2500 kVA, with highest voltage for equipment not exceeding 36 kV.
- 3. Commission Regulation (EU) No 548/2014 of 21 May 2014 on implementing Directive 2009/125/EC of the European Parliament and of the Council with regard

ЗАВИСИМОСТЬ КАПИТАЛИЗИРОВАННОЙ СТОИМОСТИ ТРАНСФОРМАТОРОВ ТМГ-630/6 И ТМГАМ-630/6 ОТ СРОКА СЛУЖБЫ

- to small, medium and large power transformers.
 4. ГОСТ 11920-85. Трансформаторы силовые масляные общего назначения напряжением до 35 кВ включительно. Технические условия. Гос. комитет по стандартам, 1985.
- 5. ГОСТ 27360-87. Трансформаторы силовые масляные герметизированные общего назначения мощностью до 1600 кВА напряжением до 22 кВ. Основные параметры и общие технические требования. Гос. комитет по стандартам, 1987.
- 6. Н.В. Дроздов, В.С. Ларин, А.Е. Филиппов. К вопросу энергоэффективности распределительных трансформаторов // «ЭЛЕКТРО». 2015. № 4.
- 7. Постановление правительства от 17.06.2015 РФ № 600 «Об утверждении перечня объектов и технологий, которые относятся к объектам и технологиям высокой энергетической эффективности»: http://www.consultant.ru/document/ cons_doc_LAW_181403/.
- 8. https://www.regulations.gov/document?D=EERE-2010-BT-STD-0048-0762.

- СТО34.01-х.х-ххх-ххх. Трансформаторы силовые распределительные 6–10 кВ. Требования к уровню потерь холостого хода и короткого замыкания. ПАО «Россети», проект стандарта.
- Н.В. Якшина. Целесообразность применения трансформаторов со сниженным энергопотреблением // «Энергоэксперт». 2015. № 2 (49).
- 11. HITACHI Amorphous Transformers: www.hitachi-ies.co.jp/english/.
- Н. Тишкин. Новое поколение энергосберегающих трансформаторов от компании «Электрощит Самара» // Энергетика и промышленность. 2017.
 № 10 (318).
- 13. Силовые трансформаторы. Справочная книга / Под ред. С.Д. Лизунова, А.К. Лоханина. М.: Энергоиздат, 2004.
- Amorphous Core Transformers from Materials to Total Ownership Cost via International Efficiency Standards. — Hitachi Metals Europe GmbH, 2016. (Презентация доклада на XXIV конференции ТРАВЭК. 29.11.2016).